Semi-supervised domain adaptation using unlabeled data for end-to-end speech recognition
نویسندگان
چکیده
منابع مشابه
SEE: Towards Semi-Supervised End-to-End Scene Text Recognition
Detecting and recognizing text in natural scene images is a challenging, yet not completely solved task. In recent years several new systems that try to solve at least one of the two sub-tasks (text detection and text recognition) have been proposed. In this paper we present SEE, a step towards semi-supervised neural networks for scene text detection and recognition, that can be optimized end-t...
متن کاملEnd-to-end Audiovisual Speech Recognition
Several end-to-end deep learning approaches have been recently presented which extract either audio or visual features from the input images or audio signals and perform speech recognition. However, research on end-to-end audiovisual models is very limited. In this work, we present an end-toend audiovisual model based on residual networks and Bidirectional Gated Recurrent Units (BGRUs). To the ...
متن کاملEnd-to-End Speech Recognition Models
For the past few decades, the bane of Automatic Speech Recognition (ASR) systems have been phonemes and Hidden Markov Models (HMMs). HMMs assume conditional independence between observations, and the reliance on explicit phonetic representations requires expensive handcrafted pronunciation dictionaries. Learning is often via detached proxy problems, and there especially exists a disconnect betw...
متن کاملMultichannel End-to-end Speech Recognition
The field of speech recognition is in the midst of a paradigm shift: end-to-end neural networks are challenging the dominance of hidden Markov models as a core technology. Using an attention mechanism in a recurrent encoder-decoder architecture solves the dynamic time alignment problem, allowing joint end-to-end training of the acoustic and language modeling components. In this paper we extend ...
متن کاملTowards End-to-End Speech Recognition
Standard automatic speech recognition (ASR) systems follow a divide and conquer approach to convert speech into text. Alternately, the end goal is achieved by a combination of sub-tasks, namely, feature extraction, acoustic modeling and sequence decoding, which are optimized in an independent manner. More recently, in the machine learning community deep learning approaches have emerged which al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Phonetics and Speech Sciences
سال: 2020
ISSN: 2005-8063,2586-5854
DOI: 10.13064/ksss.2020.12.2.029